
LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

Objectives

In this Lecture you will learn:

• What is a transaction and the transaction state

• ACID properties for maintaining database consistency.

• How and when the rollback occurs.

• The purpose of the concurrency control.

1. Introduction

 A transaction is a unit of program execution that accesses and possibly updates

various data items. Usually, a transaction is initiated by a user program written in a high-

level data manipulation language (typically SQL), or programming language (e.g., C++

or Java), with embedded database accesses.

 The transaction has four properties (ACID Properties). These are used to maintain

consistency in a database, before and after the transaction.

1.1 Atomicity

 A transaction is a single unit of operation. You either execute it entirely or do

not execute it at all. There cannot be partial execution.

Fig1. A Transaction Example

Example:

• Suppose that the values of accounts A and B are $1000 and $2000, respectively.

• Now suppose that, during the execution of transaction Ti, a failure occurs that

prevents Ti from completing its execution successfully.

• Further, suppose that the failure happened after the write(A) operation but before

the write(B) operation.

• In this case, the values of accounts A and B reflected in the database are $950 and

$2000. The system destroyed $50 as a result of this failure.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

• Because of the failure, the state of the system no longer reflects a real state of the

world that the database is supposed to capture. We term such a state an

inconsistent state.

• The basic idea behind ensuring atomicity is this: The database system keeps track

(on disk) of the old values of any data on which a transaction performs a write().

This information is written in a file called the log.

• Ensuring atomicity is the responsibility of the database system; specifically, it is

handled by a component of the database called the recovery system.

1.2 Consistency

 The consistency requirement here is that the sum of A and B be unchanged by the

execution of the transaction. Without the consistency requirement, money could be

created or destroyed by the transaction! It can be verified easily that, if the database is

consistent before the execution of the transaction, the database remains consistent after

the execution of the transaction.

1.3 Durability

 After successful completion of a transaction, the changes in the database should persist.

Even in the case of system failures.

1.4 Isolation

 A transaction should be executed in isolation from other transactions (no Locks). Even
if the consistency and atomicity properties are ensured for each transaction, if several
transactions are executed concurrently, their operations may interleave in some
undesirable way, resulting in an inconsistent state.

1.5 Transaction states

• a transaction may not always complete its execution successfully. Such a

transaction is termed aborted. If we are to ensure the atomicity property, an

aborted transaction must have no effect on the state of the database. Once the

changes caused by an aborted transaction have been undone, we say that the

transaction has been rolled back. A transaction that completes its execution

successfully is said to be committed.

• A transaction must be in one of the following states:

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

• Active, is the initial state; the transaction stays in this state while it is executing.

• Partially committed, after the final statement has been executed.

• Failed, after the discovery that normal execution can no longer proceed.

• Aborted, after the transaction has been rolled back and the database has been

restored to its state prior to the start of the transaction.

• Committed, after successful completion.

Fig2. A Transaction States.

Fig3. A Transaction States with Roll Back Mechanism.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

1.6 Transaction Isolating

Transaction-processing systems usually allow multiple transactions to run

concurrently. Allowing multiple transactions to update data concurrently causes

several complications with the consistency of the data, as we saw earlier. Concurrent

execution of transactions requires extra work; it is far easier to insist that transactions

run serially—that is, one at a time, each starting only after the previous one has been

completed. However, there are two good reasons for allowing concurrency:

• Improved throughput and resource utilization: The parallelism of the CPU and the I/O

system can therefore be exploited to run multiple transactions in parallel. While a read or

write on behalf of one transaction is in progress on one disk, another transaction can be

running in the CPU, while another disk may be executing a read or write on behalf of a third

transaction. All of this increases the throughput of the system—that is, the number of

transactions executed in a given amount of time. Correspondingly, the processor and disk

utilization also increases; in other words, the processor and disk spend less time idle, or not

performing any useful work.

• Reduced waiting time.

Fig4. Concurrent Transactions.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

2. Concurrency Control
 Concurrency, as defined by Merriam-Webster, is two or more things capable of
“operating or occurring at the same time.”

 In the context of software, Concurrency Control is the process of managing
simultaneous operations on the database without having them interfere with one
another.

▪ A major objective in developing a database is to enable many users to access

shared data concurrently.

▪ Concurrent access is relatively easy if all users are only reading data, as there is
no way that they can interfere with one another

▪ When two or more users are accessing the database simultaneously and at least
one is updating data, there may be interference that can result in inconsistencies.

Fig5. Concurrent Transactions.

▪ The Concurrency Control objective is similar to the objective of multi-user

computer systems, which allow two or more programs (or transactions) to execute
at the same time.

▪ The operations of the two transactions are interleaved to achieve concurrent
execution. In addition, throughput—the amount of work that is accomplished in
a given time interval—is improved as the CPU executes other transactions instead
of being in an idle state.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

Fig. 6. Schedule 1—a serial schedule Fig. 7 Schedule 2—a serial schedule in which T2 is
followed by T1. T1 is followed by T2.

• These schedules are serial. Each serial schedule consists of a sequence of
instructions from various transactions, where the instructions belonging to one
single transaction appear together in that schedule.

• When the database system executes several transactions concurrently, the
corresponding schedule no longer needs to be serial.

• If two transactions are running concurrently, the operating system may execute
one transaction for a little while, then perform a context switch, execute the second
transaction for some time, and then switch back to the first transaction for some
time, and so on. With multiple transactions, the CPU time is shared among all the
transactions.

Fig. 8 Schedule 3—a concurrent schedule equivalent to schedule 1.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

• It is the job of the database system to ensure that any schedule that is executed will
leave the database in a consistent state.

• The concurrency control carries out this task.

• We can ensure consistency of the database under concurrent execution by making
sure that any schedule that is executed has the same effect as a schedule that could
have occurred without any concurrent execution.

• That is, the schedule should, in some sense, be equivalent to a serial schedule. Such
schedules are called serializable schedules.

We examine three examples of potential problems caused by concurrency (Concurrency
phenomena, Concurrency conflicts):

- The lost update problem.
- The uncommitted dependency problem.
- The inconsistent analysis problem.

2.1 Lost Update

 The lost update problem occurs when multiple concurrent transactions try to read
and update the same data. Let us understand this with the help of examples:

Fig. 9 The lost update problem.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

 In this example, we have two concurrent transactions trying to withdraw 50$ and
30$from Bob's account. After both transitions have finished we expect to see 20$ on the
account balance, but since the second transaction reads only the committed data, it is
unaware of the concurrent operation and behaves as the first transaction never happened.
As a result, the second transaction overwrote the first update, and our system suffered a
50$ loss. This was an example of the Lost Update problem.

Example 2: The loss of T2’s update is avoided by preventing T1 from reading the value
of balx until after T2’s update has been completed.

Fig. 10 The lost update problem.

2.2 The uncommitted dependency (or dirty read) problem

 A dirty read happens when a transaction is allowed to read the uncommitted changes
of some other concurrent transaction.
 Taking a business decision on a value that has not been committed is risky because
uncommitted changes might get rolled back.

Fig. 11. The dirty read problem.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

In the diagram above, the flow of statements goes like this:
1. Alice and Bob started two database transactions.
2. Alice modifies the title of a given post record.
3. Bob reads the uncommitted post record.
4. If Alice commits her transaction, everything is fine. But if Alice rolls back, then

Bob will see a record version that no longer exists in the database transaction log.

Rolls back an explicit or implicit transaction to the beginning of the transaction, or to a
savepoint inside the transaction.
 You can use ROLLBACK TRANSACTION to erase all data modifications made from
the start of the transaction or to a savepoint. It also frees resources held by the transaction.

Fig.12 . A Transaction Rollback.

Example :
 The uncommitted dependency problem occurs when one transaction is allowed to
see the intermediate results of another transaction before it has been committed.

Fig. 13 . The uncommitted dependency problem.

LEC 4 Transaction Management

 Assist Lec. Mohammed D. Badir

DBMS University of Basrah

College of CS & IT

Second semester 2023-2024

2.3 The inconsistent analysis problem

 The problem of inconsistent analysis occurs when a transaction reads several values
from the database but a second transaction updates some of them during the execution

of the first.
 For example, a transaction that is summarizing data in a database (for example, totaling
balances) will obtain inaccurate results if, while it is executing, other transactions are
updating the database.

Fig.14. inconsistent analysis.

